Effect of BaO and SiO₂ addition on PTCR BaTiO₃ ceramics

GAOSHENG LIU, R. D. ROSEMAN

Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA E-mail: gaosheng.liu@tod.com

The influence of Ba-excess and liquid phase sintering with SiO₂ on the electrical conduction and microstructure in PTCR BaTiO₃ has been investigated. Dense (95–96%), small grain (5–10 μ m) PTCR materials were obtained in Ba-excess (Ba/Ti = 1.006) BaTiO₃. The materials exhibit low room temperature resistivity ρ_{RT} (10⁰–10² Ω ·cm) and high PTCR respond (more than 5 orders). Solid state sintering was found to inhabit the semiconducting and PTCR behavior in Ba-excess materials. Liquid phase sintering, using SiO₂ in the Ba-excess BaTiO₃, resulted in low ρ_{RT} and significant PTCR response. Through domain observation, interior "Polaron deficient zones" were found in samples which exhibit limited liquid phase sintering, leading to non-uniform directional domains and low charge carrier mobility. Proper control of the SiO₂ concentration was found critical for obtaining uniform directional domain microstructures and low ρ_{RT} . © 1999 Kluwer Academic Publishers

1. Introduction

The PTCR effect of BaTiO₃ is that a nonlinear resistivity change near the Curie Point due to a mixed electrical conduction effect of spontaneous polarization and semiconducting behavior of a doped ferroelectric polycrystalline [1-3]. Semiconducting BaTiO₃ ceramics with low room temperature resistivity (ρ_{RT}) and high PTCR effect performance is attractive to fabricate in order to meet various demand in many electronic devices [3]. Both $\rho_{\rm RT}$ and PTCR response depends on composition (donor and acceptor doping as well as stoichiometry) and processing parameters, especially heat treatment schedules. During sintering, the interaction between the various dopants (donor Y^{3+} , La³⁺ or acceptor Mn³⁺ ions etc.) and excess TiO₂ or BaO creates the chemical defects and modifies the stress distribution [4, 5]. This activates the electrical and mechanical compensating mechanism, especially within near grain boundary regions [6]. The defects, along with the ferroelectric spontaneous polarization and domain structure will dominate the nature of grain and grain boundary and determine the electron transportation processes [7].

SiO₂ and excess TiO₂ are usually added in order to create a liquid phase and reduce sintering temperature [8]. The eutectic temperature of Ti-excess is around 1320 °C. After addition of SiO₂, this temperature decreases to approximately 1260 °C [9]. The dispersion of dopants in the material and microstructure uniformity can be promoted by the presence of SiO₂. In BaTiO₃ system with small excess of TiO₂ and SiO₂, Ueoka clarified the existence of at lease two phases in the grain boundary in the specimens, BaTi₃O₇, and a glassy phase assumed to be BaTiSiO₅ [10]. In a wide concentration range of titanium-rich liquid phase, $\rho_{\rm RT}$

was found to be roughly constant, and the intensity of the PTCR effect to be dependent on the amount of second phase [2]. Udayakumar studied Ba-excess BaTiO₃ ceramics with the Ba/Ti ratio = 1.02 doped with Nb and Si. The samples showed a very low ρ_{RT} and exhibited a resistivity jump at the Curie point [8].

Electrical conduction in materials depends on the concentration of charge carriers and their mobility in polycrystalline materials. A polaron model associated with Ti-site is usually used to explain the electrical conduction in n-type BaTiO₃ grain [4]. The most acceptable PTCR model of BaTiO₃ is the grain boundary electrical barrier model, which first was established by Heywang, then refined below the Curie point by Jonker [11–14]. Subsequent studies focused on refining the models with respect to grain boundary barrier layers and defect chemistry [15-18]. In the semiconducting BaTiO₃, determination of the various defects is very complex and most techniques can not measure due to the low concentration of dopants. Possible defects include vacancies of Barium, Titanium and oxygen ions along with the dopant occupied sites [2, 19]. These defects locate within grains or segregate at grain boundaries. The kinetic behavior of defects depends on dopant concentration, sintering and annealing schedule. A model in which the electrical potential barrier is established by Ba vacancies was developed by Danials and a "Ti vacancy" model was proposed by Lewis [15, 20, 21]. Yet neither was able to fully explain the experimental results as a function of stoichiometry (Ba/Ti ratio) very well.

Ba-excess $BaTiO_3$ ceramics have much lower concentration of oxygen vacancies than that of Ti-excess, which was confirmed through as aging studies [22, 23]. PTCR BaTiO₃ ceramics with higher proportion of Ba, therefore, was given attention for both application and theoretical understanding of PTCR ceramics although it is difficult to obtain the semiconducting behavior by the addition of extra BaO [9, 19]. The interplay between extra BaO and various dopants determines the secondary phase and defect distribution, as well as domain formation. The present paper focuses on studying the sintering behavior and electrical properties of doped BaTiO₃ as a function of the BaO and addition of liquid phase. Domain orientation pattern in BaTiO₃ with addition of BaO and SiO₂ are also investigated with some detail.

2. Experimental

The ceramics were prepared by typical wet milling methods. BaTiO₃ with a variety of ratio Ba/Ti = 0.997, 1.000, 1.003 were selected as raw materials. BaTiO₃ with Ba/Ti = 1.006 can be obtained by adding barium acetate to BaTiO₃ powder with ratio Ba/Ti = 1.003. The dopants, Y_2O_3 , or La₂O₃ were added as nitrate solution [18]. The batches were divided into two groups. In the first group, BaTiO₃ with various Ba/Ti ratios were doped with same amount of Y_2O_3 or La₂O₃. In the second group, Ba-excess BaTiO₃ with Ba/Ti = 1.006 was doped with (1) $Y_2O_3 + 2 \mod \%$ SiO₂, and (2) $Y_2O_3 + 0.07\%$ MnO + 2 mol % SiO₂.

The liquid media used was deionized water and isopropyl alcohol in wet milling. PVA, carbowax together with fish oil mixture for the binder, lubricant and deflocculant purpose. After ball milling, the solution was dried by a lab scale spray dryer and resultant powders were pressing into 12 mm diameter and 2 mm thickness discs. Heat treatment consists of a fixed heating rate with various sintering temperatures, a constant cooling rate with different annealing period with annealing temperature 1220 °C.

Resistivity as a function of temperature was measured using a dc power supply (0.015 V) and Keithley 614 electronmeter as a picoammeter. The microstructure of as-sintered surfaces and acid etched surfaces were taken by SEM in order to obtain the features of grain and domain structure. The average grain size was also determined by the linear intercept technique.

3. Results and discussion

3.1. Ba-excess effect

The densification of PTCR BaTiO₃ ceramics near a narrow region around the ratio (Ba/Ti = 1.000) strongly depend on the deviation of the ratio of Ba/Ti [5]. Fig. 1 shows the as-sintered surfaces of (0.18 mol % Y₂O₃) modified BaTiO₃ with different Ba/Ti at sintering temperature 1350 °C. The average grain size reduces from 30 μ m in BaTiO₃ with Ba/Ti = 0.997 samples to 1 μ m in BaTiO₃ with Ba/Ti = 1.006, illustrating a transition of typical liquid phase to solid state sintering. For BaTiO₃ ceramic with Ba/Ti = 1.006, it was thought that the secondary phase Ba₂TiO₄ and absence of liquid phase inhibit the grain growth [5]. The dependence of densification behavior on the Ba/Ti ratio is shown

Figure 1 SEM microscope of sintered surface for (A) Ba/Ti = 0.997 and (B) Ba/Ti = 1.006.

Figure 2 Relative density as a function of Ba/Ti ratios and the sintering temperatures.

in Fig. 2. With a Ba/Ti ratio ≤ 1.003 , the results indicate a typical liquid phase sintering trend with increasing sintering temperature. The eutectic temperature is $1320 \,^{\circ}$ C, in accordance with the temperature of the Ti-excess side indicated in the BaO-TiO₂ phase diagram [24].

The density increases within increasing sintering temperature until 1350 °C, followed by a decrease in

Figure 3 Average grain size as a function of Ba/Ti ratios and the sintering temperatures.

density with increasing sintering temperature. When the Ba/Ti ratio reaches 1.006, a different trend is found and the material exhibits solid state sintering below 1420 °C, above which a eutectic reaction occurs as observed by the samples sintered surface. Even though the eutectic temperature on Ba-excess side of the phase diagram is approximately 1560 °C [24], this temperature is greatly lowered due to the added dopants and only a small Ba-excess concentration, which is not well defined within this region in the phase diagram. The maximum density for Ba-excess BaTiO₃ is approximately 96% as the sintering temperature increases to 1500 °C. Fig. 3 shows the average grain size with Ba/Ti ratio. A small grain size (1–5 μ m) was obtained in Ba-excess BaTiO₃ within the sintering temperature range of 1320-1420 °C. The material with optimum density (95%) and 5 μ m grain size was obtained by sintering at 1420 °C. Figs 2 and 3 demonstrate that the eutectic temperature associated with densification and grain growth behavior in BaTiO₃ systems with a Ba/Ti ratio < 1.006 is similar to typical Ti-excess systems. Hence, Ba-excess BaTiO₃ character can be identified with a Ba/Ti ratio of ≥ 1.006 as samples were prepared from the same lot of powders. In this paper, Ba-excess BaTiO₃ referring to materials with the Ba/Ti ratio = 1.006 is mostly concerned.

Fig. 4 shows resistivity vs. temperature behavior in doped BaTiO₃ as function of Ba/Ti ratio and a sintering temperature of 1350 °C. Samples with a Ba/Ti \leq 1.003 have dark blue color, indicating the presence of Ti³⁺ [2]. A low ρ_{RT} (10¹–10⁴ Ω ·cm) with significant magnitude of PTCR rise is obtained. With a Ba/Ti ratio of 1.0045, a moderately high ρ_{RT} (10⁵–10⁶ Ω ·cm) with a shallow PTCR rise (0.5–1 order) was obtained. As the ratio increases to 1.006, the room temperature resistivity greatly increases (10¹¹ Ω ·cm) and the PTCR anomaly no longer exists. The samples are yellow in color, illustrating that limited reduction compensation by Ti³⁺ exists. These materials exhibit typical insulating behavior. The insulating properties in Ba-excess BaTiO₃ are caused by the fact that only a limited amount

Figure 4 PTCR behavior in donor doped BaTiO₃ with different Ba/Ti ratio.

of liquid phase is generated below $1420 \,^{\circ}\text{C}$ and it is not sufficient to disperse Y_2O_3 properly for uniform donor diffusion. Higher sintering temperatures were, therefore, needed to generate a liquid phase in Ba-excess samples. It was found, though, that insulating behavior exists even though the sintering temperature was in the range of $1420-1500 \,^{\circ}\text{C}$. Possible mechanisms for the insulating behavior are given below.

(1) Y^{3+} Self-Compensation. Insulating behavior stems from Y^{3+} substituting on both cation sites due to its intermediate radius between Ba²⁺ and Ti⁴⁺, which leads to a self-compensation [17]. To clarify the substitution questions, La₂O₃ was used in place of Y₂O₃ as the donor in Ba-excess BaTiO₃. The La³⁺ radius is close to that of Ba²⁺ [2]. La₂O₃ doping showed similar electrical behaviors in samples of various sintering schedules, illustrating insulating behavior is not dominated by Y₂O₃ self compensation. On the other hand, calculation of the solution formation energy by Lewis also shows a much higher preference of Y substitution to the Ba site than to the Ti site, which also denies the possibility of Y₂O₃ self-compensation [20, 21].

(2) The Chemical Reaction between BaO and Y_2O_3 . There may exist a reaction between Y_2O_3 and excess BaO to form new components Ba Y_2O_4 and Ba $_3Y_4O_9$, which occurs at 1400 °C according to the BaO- Y_2O_3 phase diagram. Occurrence of this reaction limits the amount of remnant donor availability and the concentration becomes too low to create semiconducting behavior. Experimental results indicated that slightly increasing the donor concentration to from 0.18 to 0.3 mol% does not result in semiconducting behavior. It is also known that further increasing the Y_2O_3 concentration leads to cation vacancy compensation and insulating behavior, leading a difficulty to distinguish the influence to electrical properties by this reaction [1, 3]. However, this mechanism should not be considered as the main reason for insulating behavior in Ba-excess materials as long as Y_2O_3 is well dispersed.

(3) Formation of Ti Vacancy Layer. At high sintering temperatures, Ba^{2+} diffusion leads to the concentration of Ti⁴⁺ vacancies increase greatly at grain surface layers and diffusing into the interior [15]. During cooling from sintering they become "frozen-in". As a consequence, the extra positive charges by Y_{Ba} are completely compensated by Ti⁴⁺ vacancies, instead of Ti⁴⁺ reduction to Ti³⁺, to maintain neutrality. The bulk defect equation for sintering above 1420 °C can be written in Kroger-Vink form as Equation 1 [25]. This type of defect chemistry most realistically dominates the materials behavior, limiting semiconducting behavior.

$$2Y_2O_3 \xrightarrow{Ba-excessBaTiO_3} 4Y_{Ba^{2+}} + V_{Ti^{4+}}^{\prime\prime\prime\prime} + 6O_0 \qquad (1)$$

3.2. Liquid phase sintering with SiO₂

The introduction of SiO_2 in Ba-excess BaTiO₃ creates a low temperature liquid phase and transfers the material back to one which exhibits low room temperature resistivity with PTCR behavior. The color of these samples is blue, indicating the presence of Ti³⁺.

Fig. 5 shows the resistivity behavior of Ba-excess BaTiO₃ as a function of SiO₂. ρ_{RT} decreases 10 orders of magnitude. The phases containing the Si were found to mainly segregate at the grain boundary triple points, as shown in the SEM micrograph (Fig. 6A) of a thermally etched surface. EDX analysis of grains and segregated phases is shown in Fig. 6B. Si is barely detected within BaTiO₃ grains, illustrating that SiO₂ changes the defect structure not directly by its own diffusion and substitution, instead, it incorporates dopants during densification to improve dopant disper-

Figure 5 PTCR behavior in Ba-excess $BaTiO_3$ as a function of SiO_2 addition.

Figure 6A Thermal Etched surface of Ba-excess $BaTiO_3$ with SiO_2 addition.

Figure 6B EDX spectrums of SiO_2 added Ba-excess BaTiO₃ corresponding to Fig. 6A.

sion [6]. The defect equation for this reaction is given by Equation 2

$$Y_2O_3 \xrightarrow[SiO_2addition]{\text{Ba-excessBaTiO}_3} 2Y_{Ba^{2+}} + 2Ti_{Ti^{4+}}^{3+'} + 3O_0 \qquad (2)$$

Various SiO₂ concentrations were added to donor doped $(Y_2O_3: 0.3 \text{ mol }\%)$ Ba-excess BaTiO₃ to determine optimum SiO₂ concentration. Fig. 7 shows the density and average grain size as a function of SiO₂ content at a sintering temperature of 1330 °C. As the concentration of SiO₂ increases, the relative density increase from 89–97% with a concentration 1 mol % of SiO₂. It slightly decreases to 95% with 2 mol % and further decreases to 87% with 3 mol % addition. These results show that a high-density material can be obtained

Figure 7 Density and average grain size in Ba-excess $BaTiO_3$ as a function of SiO_2 concentration.

Figure 8 As sintered surface of Ba-excess $BaTiO_3$ with addition of $SiO_2.$ (A) 0.5 mol % and (B) 2 mol %.

in SiO₂ concentration range of 1–2 mol %. In this concentration range, the average grain size is in the range of 5–10 μ m. SEM microscopy in Fig. 8 shows that the uniformity of grain growth was improved at a 2 mol % concentration while bimodel-grains appear in samples with <1 mol % SiO₂, indicating the need for sufficient liquid phase to coat particles during the sin-

tering. It was also found that grain growth increases to 30 μ m as the SiO₂ concentration increases to 3 mol %. The results on electrical behavior as a function of SiO₂ concentration show that materials within the range of 0.25–0.5 mol % SiO₂ have a high interior resistivity (10³–10⁵ Ω ·cm) through impedance analysis. Hence, optimum selection of SiO₂ to Ba-excess BaTiO₃ materials is around 2 mol % for obtaining optimum density and grain size as well as ρ_{RT} . For SiO₂ concentration over 1 mol %, a diffuse PTCR behavior of 2 orders is obtained with low ρ_{RT} (10¹–10² Ω ·cm).

The electrical properties of higher Ba-excess (Ba/Ti > 1.006) BaTiO₃ was also investigated for a constant donor doping (Y₂O₃: 0.3 mol %) and SiO₂ content (2 mol %). It was found that ρ_{RT} in these materials increases to $10^3-10^6 \ \Omega \cdot cm$ without any improvement in PTCR rise. Minor adjustments to these parameters did not significantly improve results and it is, therefore, indicated that small Ba-excess rates (Ba/Ti = 1.006) produce optimum behavior.

Although Ba-excess BaTiO₃ materials show high density and low ρ_{RT} , the PTCR rise is only 2 orders magnitude as shown in Fig. 6. Small amounts of MnO (0.01–0.07 mol%) were added to these materials to promote PTCR behavior. Mn ions segregate near grain boundary regions to enhance the potential barrier [26]. Fig. 9 shows the enhanced properties of Ba-excess materials using a sintering temperature of 1330 °C with an annealing schedule of 1220 °C/10 h.

3.3. Domain microstructure in modified Ba-excess BaTiO₃

Domain microstructure observation in this study were used to analyze the interior resistivity-structure relationship. Fig. 10 shows the typical domain configuration as a function of Ba/Ti ratio and SiO₂ concentration. Fig. 10A shows a completely random domain structure (Ba/Ti = 1.006), where many domain sets are randomly

Figure 9 PTCR effect for Ba-excess materials with and without the presence of acceptor dopant MnO.

Figure 10 Domain structure development in donor doped Ba-excess BaTiO3 with different SiO2 concentration. (A) 0% (B) 0.5 mol % (C) 2 mol %.

oriented in a complex fashion within each individual grain. As a small amount of SiO₂ (0.25–0.5 mol%) is introduced, less random patterns are developed as shown in Fig. 10B. A completely uniform directional domain pattern across each grain in Ba-excess BaTiO₃ was obtained after more SiO₂ is added (>1 mol%), as shown in Fig. 10C. The domain alignment has previously been found to have a remarkable correspondence to the electrical resistivity [18, 22, 25].

Domain nucleation serves to relieve stress during the phase transformation near T_c . The driving force for directional nucleation is derived from the strong interaction between sufficient amounts of polaron formation, spontaneous polarization and local strain fields [18, 22, 25]. In directional domain structures, long domain columns pass through the entire grain with 90° domain boundaries. The electron transportation mechanism has high mobility along the pathway in each domain column parallel to 90° domain boundaries. The homogeneous directional domain structure appears in Baexcess BaTiO₃ when sufficient liquid phase is present during sintering, where the donor is well dispersed, as shown in Fig. 10C. In the situation of poor donor dispersion, which exists in materials without enough liquid phase present, as shown in Fig. 10B, the result

shows an absence of well-defined domain structure in some local area. These areas can be defined as "polaron deficient zones". In these zones, inhomogeneous dopant dispersion occurs and, therefore, the interaction between the polaron, surrounding strain field, and neighbor spontaneous polarization is minimized, creating non-uniformity within domain alignment. The mobility is decreased in these zones. From the viewpoint of microstructure, uniform directional domain alignment is desirable to pursue low ρ_{RT} , which requires sufficient liquid presence for dopant dispersion.

4. Conclusion

A narrow range of stoichiometry (Ba/Ti = 0.997– 1.006) was used to study the electrical response and microstructure in donor and acceptor modified BaTiO₃ as well as liquid phase sintering by adding SiO₂.

Expected Ba-excess behavior in the materials studied was found with a Ba/Ti ratio ≥ 1.006 . Introduction of SiO₂ to Ba-excess materials can switch material from electrical insulator to semiconductor. It was found that SiO₂ influence the defect chemistry by dispersing donor at lower sintering temperature. The optimum SiO₂ concentration to adjust material grain growth and densifcation is approximately 2 mol%, corresponding to a proper Ba/Ti ratio 1.006. MnO was required to enhance PTCR response.

Directional alignment of the domain structure through each grain is indicative of a well-dispersed donor dopant in BaTiO₃. Conversion from random to a directional domain structure accompanies the transition from high resistance/dielectric behavior to low resistance PTCR behavior. "Polaron deficient zones" exist in Ba-excess materials with small amount of liquid phase present.

Acknowledgements

We thank Professor R. C. Buchanan for his generously supporting on the sample preparation and electrical measurements.

References

- B. M. KULWICKI, "Advances in Ceramics," Vol. 1 (Amer. Ceram. Soc., 1980) p. 138.
- 2. S. HUYBRECHTS, K. ISHIZAKI and M. TAKATA, *J. Mater. Sci.* **30** (1995) 2463.
- 3. J. G. FAGAN and V. R. W. AMARKOON, Amer. Ceram. Soc. Bulletin 72 (1993) 69.
- H. IHRIG, "Advance in Ceramics," Vol. 7 (Amer. Ceram. Soc., 1983) p. 117.
- 5. TSAI-FA LIN and CHEN-TI HU, J. Amer. Ceram. Soc. 73 (1990) 531.
- 6. G. ARLIT and U. ROBELS, J. Appl. Phys. 73 (1993) 3454.
- 7. H. B. HAANSTRA and H. IHRIG, J. Amer. Ceram. Soc. 63 (1980) 288.
- K. R. UDAYAKUMAR, K. G. BROOKS and V. R. W. AMARAKOON, Ceram. Eng. Sci. Proc. 8 (1987) 1035.

- H. M. AL-ALLAK, T. V. PARRY, G. J. RUSSELL and J. WOODS, J. Mater. Sci. 23 (1988) 1083.
- 10. H. UEOKA and M. YODOGAWA, *IEEE. Trans. Mfg. Tech.* MFT-3 (1974) 77.
- 11. W. HEYWANG, J. Mater. Sci. 6 (1971) 1214.
- 12. W. HEYWANG, Solid State Electronics 3 (1961) 51.
- 13. G. H. JONKER, *ibid.* **7** (1964) 895.
- G. H. JONKER, "Advance in Ceramics," Vol. 1 (Amer. Ceram. Soc., 1980) p. 155.
- 15. J. DANIELS, K. H. HAERDTL and R. WERNICKE, *Philip Tech. Res.* 38 (1979) 73.
- 16. B. M. KULWICKI and A. J. PURDES, *Ferroelectrics* **1** (1970) 253.
- R. C. BUCHANAN, T. R. ARMSTRONG and R. D. ROSEMAN, Ferroelectrics 135 (1992) 343.
- R. D. ROSEMAN, J. KIM and R. C. BUCHANAN, *ibid.* 177 (1996) 273.
- M. KUWABAWA, "Advances in Ceramics," Vol. 17 (Amer. Ceram. Soc., 1981) 137.
- 20. G. V. LEWIS and C. R. A. CATLOW, J. Amer. Ceram. Soc. 68 (1985) 555.
- 21. Idem., Br. Ceram. Pro. 36 (1985) 187.
- 22. H. KONDOU, M. FUJIMOTO and S. SHEIRSAKI, Jpn. J. Appl. Phys. 28 (1989) 52.
- 23. M. P. HARMER, Y. H. HU, M. LAL and D. M. SMYTH, *J. Amer. Ceram. Soc.* **49** (1983) 71.
- 24. D. E. RASE and R. ROY, *ibid.* **38** (1955) 102.
- 25. P. V. LAMBECK and G. H. JONKER, ibid. 22 (1980) 729.
- 26. DA YU WANG and KAZUMASA UMEYA, *ibid*. **73** (1990) 669.
- 27. Y. H. HU, H. M. CHAN, Z. X. WEN and M. P. HARMER, *J. Amer. Ceram. Soc.* **69** (1985) 594.
- 28. Y. H. HU, M. P. HARMER and D. M. SMYTH, *ibid.* 68 (1985) 372.

Received 22 September 1998 and accepted 11 February 1999